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Abstract

Development and applications of numerical methods devoted to reactive interface simulations are presented. Emphasis
is put on vaporization, where numerical difficulties arise in imposing accurate jump conditions for heat and mass transfers.
We use both the Level Set Method and the Ghost Fluid Method to capture the interface motion accurately and to handle
suitable jump conditions. A local vaporization mass flow rate per unit of surface area is defined and Stefan flow is involved
in the process. Specific care has been devoted to the extension of discontinuous variables across the interface to populate
ghost cells, in order to avoid parasitic currents and numerical diffusion across the interface. A projection method is set up
to impose both the velocity field continuity and a divergence-free condition for the extended velocity field across the inter-
face. The d2 law is verified in the numerical simulations of the vaporization of an isolated static drop. Results are then
presented for a water droplet moving in air. Vapor mass fraction and temperature fields inside and outside the droplet
are presented.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Computing interface motion in a multiphase incompressible flow is a wide topic of research and several
approaches can be used. The Volume of Fluid method [12], the Level Set Method [15,24] and front tracking
methods [26] are the most common numerical strategies used to predict interface motion. Whatever the chosen
method, a specific approach is needed to impose appropriate jump conditions across the interface for pressure,
density and viscosity. In [21] three different formulations are proposed for the Navier–Stokes equations for
two-phase flows with jump conditions, namely the ‘‘Whole-Domain Formulation’’, the ‘‘Whole-Domain Con-
servation Law Form’’ and the ‘‘Jump Condition Form’’; the first one is a non-conservative Navier–Stokes for-
mulation and the second is a conservative Navier–Stokes formulation. But in both formulations, jump
conditions are smoothed around the interface, smearing out discontinuous terms. The third formulation is
much more satisfactory as it allows a sharp interface representation; specific numerical methods have been
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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developed to take into account jump conditions, with a level set method and a front tracking method respec-
tively [11,18]. These approaches not only avoid the introduction of a fictitious interface thickness, but are also
suitable for providing a more accurate discretization of discontinuous terms, reducing parasitic currents and
improving the resolution of the pressure jump condition.

In recent years, new investigations have been developed for computing reactive interfaces such as boiling
flows with low density ratios [10,23,28], premixed flames [14,19,20] or Stefan problems [7,8]. The main diffi-
culty in computing reactive interfaces is the accurate discretization of new jump conditions. For example,
between two reacting phases of different densities, a velocity jump condition must be imposed to satisfy mass
conservation. Moreover, three different velocities can be defined on the interface, namely the reacted phase
velocity, the unreacted phase velocity and the reaction speed.

The Ghost Fluid Method [6] is a very powerful numerical technique to account accurately for various jump
conditions; it has been successfully applied for inert multiphase incompressible flow [11,13]. Extending that
approach, Nguyen et al. [14] developed a ghost fluid method for propagating a flame front in an incompress-
ible fluid. They proposed an extension of the velocities on each side of the interface with no smearing out of
any quantities across the interface. In that framework, powerful numerical tools [7,13] have been developed to
impose both jump conditions and boundary conditions on the interface. Recently, impressive results have been
obtained by Wang et al. [27] for the numerical simulation of heterogeneous propellant combustion with a
Ghost Fluid Method. However, none of this work deals with liquid vaporization. We observe that
[7,11,13,14] studies are quite suitable in some cases for handling vaporization jump conditions, but improve-
ments are still required; we thus propose to extend these numerical methods in order to study this challenging
task. We first present a simplified model for a 2D-axisymmetric static drop, where the surrounding Stefan flow
is assumed to be irrotational. This first step enables us to validate the numerical methods which are defined for
heat and mass transfers across the interface: the d2 law is verified in the numerical simulations of the vapor-
ization of an isolated static drop. Starting from this first approach, an extended model is then developed for
moving droplets: the Navier–Stokes equations are solved, using Nguyen method [14], in order to describe the
drop motion and the vapor flow around the drop. We observe that the original method [14] is accurate for a
low density ratio, as is the case in flame front propagations, but it can be strongly affected by parasitic currents
for a high density ratio. We overcome this difficulty by improving the extension of the velocity field in the
liquid phase, by setting a divergence-free velocity extension.

2. Formalism

We consider incompressible flows and we assume that the fluid’s physical properties are constant in space
and time. The liquid phase is mono-component and the gas phase is different from the liquid vapor. Two
phases are considered, the liquid phase (subscript l) and the gas phase (subscript g). The jump operator [Æ]
across the interface C is defined as follows:
½A�C ¼ Al � Ag
2.1. Governing equations and interfacial conditions for heat and mass transfers

Liquid vaporization depends strongly on the temperature and the concentration of the different species. We
thus have to solve the following conservation equations to predict the temperature and the species mass frac-
tion fields:
oT
ot
þ ð~V � rÞT ¼ r:ðkrT Þ

qCp
ð1Þ

oY
ot
þ ð~V � rÞY ¼ r � ðqDmrY Þ

q
ð2Þ
where T is the temperature, Y is the mass fraction, ~V is the velocity vector, k is the thermal conductivity, q is
the density, Cp is the specific heat at constant pressure and Dm is the mass diffusion coefficient.
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When reactive interfaces are considered, jump conditions must be added to respect energy conservation
[4,7,27] and mass conservation [2,4,27] across the interface:
hlg _x� ½krT � ~N �C ¼ 0 ð3Þ
_xY C

l þ ½qDmrY � ~N �C ¼ _xY C
g ð4Þ
where _x is the vaporization rate (local vaporization mass flow rate per unit surface), hlg is the latent heat of
vaporization and ~N is the vector normal to the interface. Noting that the gradients of the species mass fraction
are zero in a mono-component liquid, Eq. (4) becomes:
_x ¼
qgDmrY � ~N jCg

1� Y C
vap

ð5Þ
On the interface, two values can be defined for the species mass fraction: (1) on the liquid side and (2) on the
gas side Y C

g the vapor concentration, depending on the saturated vapor pressure. Using the Clausius–Clapey-
ron relation:
pC
vap ¼ patm exp � hlgmvap

R
1

T C �
1

T B

� �� �
ð6Þ

Y C
vap ¼

pC
vapmvap

ðpatm � pC
vapÞmg þ pC

vapmvap

ð7Þ
where patm is the ambient pressure in the gaseous domain, pC
vap is the saturated vapor pressure on the interface,

mvap is the molar mass of the vapor, R is the perfect gas constant, TB is the liquid boiling temperature for the
gaseous ambient pressure condition, TC is the interface temperature and mg is the molar mass of the ambient
gas. We observe that solving the species mass fraction equation is only required in the gas phase, using a
Dirichlet boundary condition on the interface, given by Eq. (7).

2.2. Interface reaction speed and fluid velocity jump

The mass conservation condition across the interface reads:
_x ¼ qlð~V S � ~V lÞ � ~N ¼ qgð~V S � ~V gÞ � ~N ð8Þ
where the interface velocity ~V S is defined as the sum of the liquid phase velocity and the surface regression
speed due to vaporization ~V int:
~V s ¼ ~V l þ ~V int ð9Þ

We can then write:
~V int ¼
_x
qr

~N ð10Þ
Moreover, the following velocity jump condition can be derived from Eqs. (8) and (9) to respect mass conser-
vation across the interface [4,14]:
½~V �C ¼ _x
1

q

� �
C

~N ð11Þ
2.3. Computing the vapor flow around a static drop

A first model is developed for the vaporization of a static drop. The velocity jump condition equation (11)
induces a vapor flow around the drop, known as the Stefan Flow. Assuming that the vapor flow around a
static drop is irrotational, the velocity can be derived from a velocity potential:
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~V g ¼ ru ð12Þ

Assuming that the flow is incompressible, we can solve the following equation to compute the velocity
potential:
Du ¼ 0 ð13Þ

with the following jump condition to respect mass conservation across the interface:
½ru � ~N �C ¼ _x
1

q

� �
C

ð14Þ
2.4. Computing the fluid flow inside and outside a moving drop

Fluid velocity fields can be computed using Navier–Stokes equations, with a divergence-free condition in
the gas and the liquid domains:
o~V
ot
þ ð~V � rÞ~V ¼ �rp

q
þr:ð2lDÞ

q
ð15Þ

r � ~V ¼ 0 ð16Þ
where p is the fluid pressure, l the dynamic viscosity and D is the viscous deformation tensor. We apply appro-
priate jump conditions, as is usual for an inert interface:
½p�C ¼ rjð/Þ þ 2½l�Cðru � ~N ;rv � ~NÞ � ~N � _x2 1

q

� �
C

ð17Þ

½q�C ¼ ql � qg ð18Þ
½l�C ¼ ll � lg ð19Þ
where r is the liquid surface tension and j the interface curvature.
But, due to the interface reaction, one more jump condition for the fluid velocity is required, and given by

Eq. (11).

2.5. Level Set Methods

The interface is numerically defined as the zero level curve of a level set function /. This function evolves
with the interface reaction speed and is transported by the liquid velocity at the interface using the following
relation:
o/
ot
þ ~V l þ

_x
ql

~N
� �

� r/ ¼ 0 ð20Þ
One feature of Level Set Methods is to transport, over the whole domain, a function which is physically mean-
ingful only on the interface. The continuity of the interface velocity must be satisfied in both phases in the
interface neighborhood, and it is important that the function / stays continuous and well-resolved to keep
the geometrical properties of Level Set Methods. This requirement can be achieved by solving a redistancing
equation which forces / to be the signed distance to the interface for every time step, without changing the
zero level curve location.
od
os
¼ signð/Þð1� jrdjÞ ð21Þ
Eq. (21) is iterated on a few steps for a fictitious time s, and it converges to a signed distance function in the
whole domain [24].

Thus, geometrical interface properties, such the normal vector and the curvature j, can be easily and accu-
rately computed with a standard second order central finite difference scheme:
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~N ¼ r/
jr/j jð/Þ ¼ �r � ~N ð22Þ
It is well known that numerical computation of Eqs. (20) and (21) can generate mass loss in under-resolved
regions. This is the main drawback of level set methods, but grid resolution in the test cases presented is fine
enough to ensure that this loss is negligible (<1%).

3. Numerical methods

We now describe the numerical methods used to solve the above equations. The spatial derivatives are eval-
uated with a fifth order Weighted Essentially Non Oscillatory (WENO 5) scheme [9] for convective terms and
a second order central scheme for diffusive terms. Temporal derivatives are first order explicit for convective
terms and implicit for diffusive terms. The symmetric linear systems are solved with the Conjugate Gradient
Preconditioned method.

3.1. Solving mass fraction equation

As has been previously mentioned (Section 2.1), to describe species mass fraction around the vaporizing
liquid interface, we solve Eq. (2) with a prescribed Dirichlet boundary condition on the interface equation
(7). A symmetric linear system is thus obtained from:
Y nþ1 � Dtr � ðDmrY nþ1Þ ¼ Y n � Dtð~V � rÞY n ð23Þ

For nodes close to the interface, the Dirichlet condition is applied using the second order scheme developed by
[7] for Stefan problems. Vapor mass fraction at the interface is obtained with Eqs. (6) and (7). To determine
the temperature on the interface, the extended liquid temperature T ghost

i in the gaseous domain (described in
Section 3.3) is used to find the liquid temperature value closest to the location considered. The interface tem-
perature is then obtained (in 1D and assuming for example that /i+1 > 0 and /i < 0) by
T int ¼
T iþ1j/ij þ T ghost

i j/iþ1j
j/ij þ j/iþ1j

ð24Þ
That scheme can be generalised in two and three dimensions. When Tint is estimated by averaging of the liquid
temperature and the gas temperature, instead of the liquid temperature and the extended liquid temperature in
the gas, unrealistic interface temperature can be observed.

3.2. Solving heat equation

Energy conservation equation is expressed using the temperature variable. The temperature is continuous
across the interface. But when the liquid is vaporizing, the thermal flux is discontinuous due to the latent heat
from the phase change. We thus solve a symmetric linear system deduced from:
qCpT nþ1 � Dtr � ðkrT nþ1Þ ¼ qCpT n � qCpDtð~V � rÞT n ð25Þ

and we must account for the jump condition equation (3) on the thermal flux. In [13], the authors set up a
method for solving the Poisson equation with jump conditions on the solution and/or on the solution’s normal
derivative, and with variable coefficients (k is not continuous) across the interface. This method can be easily
adapted to solve Eq. (1) with the jump condition equation (3).
3.3. High order extension for computing convective terms

Let us consider a variable h which is discontinuous across the interface, and/or its normal derivative hn also
discontinuous across the interface (temperature or mass fraction fields for example). When deriving such vari-
ables with a high order scheme in the neighborhood of the interface, we use points on each side of the inter-
face. In order to avoid smearing out temperature and mass fraction fields when computing explicit convective
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terms, we must extrapolate each one of these fields on the other side of the interface in order to respect the
continuity and normal derivative continuity of these variables. That can be achieved using high order extrap-
olation in the normal direction as proposed by [1]. The author extended numerical algorithms from [6,16] to an
arbitrary order, imposing continuity for the variables and the normal derivative of the variables. Then the
extrapolated values populate ghost values in the ghost domain, and are used to compute the convective deriv-
ative. We use here the following two-step iterative algorithm from [1]:
ohn

ot
¼ �ð~N � rÞhn ð26Þ

oh
ot
¼ �ðð~N � rÞh� hnÞ ð27Þ
where hn stands for:
hn ¼ ð~N � rÞh ð28Þ

We can note that this algorithm has been used in [8] to improve the numerical accuracy of the method, devel-
oped by the same authors in [7] for computing Stefan problems.

In the present study, we extrapolate the liquid temperature field (in the gas), the gas temperature field (in
the liquid) and the vapor mass fraction field (in the liquid). By improving numerical accuracy of convective
terms in the interface neighborhood, this method enables us to carry out simulations involving high temper-
ature gradients between the drop and the gas, and avoid artificial heating of the liquid phase due to numerical
diffusion. Moreover, such extrapolation for mass fraction fields enables us to compute the vaporization rate on
each side of interface continuously using Eq. (5). It is well designed both for the transport of the interface with
a continuous reaction speed in the interface neighborhood, and for computing explicit convective derivatives
without smearing out discontinuous variables. This last consideration is particularly important as an artificial
heating of the liquid phase can lead to results, such as liquid temperature greater than boiling temperature,
that are not physically meaningful.

For the discretization of Eqs. (26)–(28), we use a first order upwind scheme for spatial derivatives and a first
order explicit scheme for temporal derivatives.

3.4. Computing Stefan flow for a static drop

To compute the Stefan flow around the static liquid phase we solve Eq. (13) with appropriate jump condi-
tions equation (14). We use standard a second order central difference scheme for derivative discretization and
we apply the numerical methods set up by [13] to take into account jump conditions on normal derivatives, as
previously presented for the energy equation. Note that high order extrapolation is used to define ghost values
of the velocity potential in the liquid phase, as described in the previous section. Knowing the velocity field
extension in the liquid phase, we are thus able to compute convective terms in the gas phase.

3.5. Solving Navier–Stokes equations with appropriate jump conditions

A first order projection method is used for temporal integration of Navier–Stokes equations [17]. Spatial
discretization is carried out on a standard MAC grid, where the pressure and the level set function are defined
on the cell centers (i, j) whereas velocity components are expressed on a staggered grid, namely ui+1/2,j, vi,j+1/2.

Starting from [11] for the discretization method for pressure and density discontinuities, Nguyen [14] pro-
posed an extension to take into account a reactive interface between two incompressible immiscible fluids with
different densities. In the first step we ran preliminary tests and observed that although the discretization pro-
posed by [14] was well adapted to studying flame front propagation with a low density ratio, it led to unrealistic
mass predictions for liquid–gas interface computations with a high density ratio. In particular, it appears that
the liquid phase velocity field extension is not fully satisfactory. Indeed, as pointed out by [25], the extension
must the respect divergence-free condition in the whole domain, even in the interface neighborhood. Otherwise,
the interface is transported by a liquid velocity field which does not respect mass conservation, leading to erro-
neous predictions of the interface motion. We now therefore present an improvement of the liquid velocity field
extension to preserve the divergence-free condition on the interface.
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Let us consider a velocity field which is discontinuous across a given interface, with a jump condition given
by Eq. (11). Using the Ghost Fluid Method [6], we have to populate ghost cells on each side of the interface,
corresponding to an extension of the gaseous/liquid velocity field in the liquid/gaseous domains respectively.
This can be obtained with the following strategy [14]:
~V ghost
l ¼ ~V g � _x

1

q

� �
C

~N ð29Þ

~V ghost
g ¼ ~V l þ _x

1

q

� �
C

~N ð30Þ
As has been previously pointed out, such an extension imposes velocity field continuity across the interface but
the divergence-free condition is not satisfied. We observed that this failure generates important parasitic cur-
rents in the velocity field, in particular in the liquid domain. On the other hand, the gas velocity field extension
is not so critical, as the interface is only transported with the liquid velocity field. We thus decided to keep the
gaseous velocity field extension, and we used the following projection method for solving Navier–Stokes equa-
tions and to extend the liquid velocity field:

1. Compute an intermediate velocity field ~V �l and ~V �g:
~V �l ¼ ~V �l � Dt ð~V n
l � rÞ~V n

l �
llD~V

n
l

ql

 !

~V �g ¼ ~V n
g � Dt ð~V n

g � rÞ~V n
g �

lgD~V
n
g

qg

 ! ð31Þ
Note that when the interface crosses a mesh cell, the viscosity is computed following numerical procedures
from [11,13].
2. Compute the right hand side for the Poisson equation:
If / > 0 : f ¼ r � ~V �l
Else if / < 0 : f ¼ r � ~V �g

ð32Þ
3. Compute the pressure field by solving the Poisson equation with a numerical strategy from [11] to account
for pressure and density jumps:
r � rpnþ1

qnþ1

� �
¼ f

Dt
ð33Þ
4. Compute the real divergence-free velocity field following [11] and [14]:
If / > 0 : ~V nþ1
l ¼ ~V �l � Dt

rpnþ1

qnþ1

Else if / < 0 : ~V nþ1
g ¼ ~V �g � Dt

rpnþ1

qnþ1

ð34Þ
The above procedure is similar to [14] method. The next step is to apply the velocity field extension before a
new time step. Our extension methodology for the liquid velocity field is now described.
5. Compute a ghost pressure pghost for the liquid velocity field in the gaseous domain:
r � rpghost

qnþ1

� �
¼ r �

~V �l
Dt

ð35Þ
6. Compute a liquid velocity field extension ~V ghost
l in the gaseous domain:
~V ghost
l ¼ ~V �l � Dt

rpghost

qnþ1
ð36Þ
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7. Define a new velocity field ~W :
Table
Physic

Gas
Liquid
If / > 0 : ~W ¼ ~V nþ1
l

Else if / < 0 : ~W ¼ ~V ghost
l

ð37Þ
The resulting ~W vector is still not divergence free at the interface, and one more step is necessary to enforce
this condition.
8. Following the Hodge decomposition, project on divergence-free space to construct a divergence-free liquid

velocity field in the whole domain by solving the following Poisson equation for a potential function w:
Dw ¼ r � ~W ð38Þ

We then get the solution:
~V nþ1
l ¼ ~W �rw ð39Þ
9. Determine an gas velocity field extension ~V ghost
g for the next time step:
~V ghost
g ¼ ~V l � _x

1

q

� �
C

~N ð40Þ
We can observe that, instead of applying this quite complex methodology, we could only apply step eight on
Eq. (30) for the liquid velocity field extension from [14]. However we observed that with such a simplification
in the procedure, the efficiency of the projection method is not sufficient to impose the divergence-free
condition.
3.6. Temporal and spatial numerical accuracy

We use a classical time-step restriction to respect the CFL condition for convective terms, viscous terms and
surface tension terms as proposed in [11]. Heat and mass transfers do not impose further time-step restriction,
as implicit schemes are used for heat diffusion and mass diffusion. Since the lowest order of the method used to
impose pressure, density, viscosity and heat flux jumps is of the first order, the overall accuracy of the method
may not be more than first order.

4. Numerical results

The following numerical values for physical variables are used in the results presented. They are close to
water properties for the liquid phase and air properties for the gas phase (Table 1).

In the first test case (Section 4.1), we consider a static vaporizing drop. Thus the flow is computed only in
the gas phase using Eq. (13) and the corresponding jump condition (14), and the interface motion is only dri-
ven by the regression speed of vaporization. Then Eq. (20) becomes:
o/
ot
þ _x

qr

~N � r/ ¼ 0 ð41Þ
Simulations in Section 4.1 are carried out in a 2D-axisymmetric configuration. The formulation used here for
static drops enables us to run the computations with a much longer time-step than when the Navier–Stokes
solver is used, since no drastic time-step restriction on surface tension is required. Thus, less computer time is
needed for the convergence study carried out in order to check that our method correctly takes into account
1
al properties for the liquid phase and the gas phase

q (kg m�3) l (kg m�1 s�1) k (W m�1 K�1) Cp (J kg�1 K�1) M (kg mol�1) hlg (J kg�1) Dm (s�1) TB (K) r (N m�1)

1.226 1.78 · 10�5 0.046 1000 0.029 2.3 · 106

1000 1.137 · 10�3 0.6 4180 0.018 2 · 10�5 373 0.070
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heat and mass transfer across the interface. In Sections 4.1 and 4.2, simulations are stopped when the drop
diameter is equal to half its initial diameter. In this section gravity is neglected.

4.1. Vaporization of an axisymmetric static droplet (low temperature)

In this first numerical test case, the initial drop radius is RG = 150 lm, the initial drop temperature is 353 K
and two initial gas temperatures are considered, Tg = 373 K and 573 K. The length of the domain in the x-
direction is lx = 4RG and in the y-direction ly = 2lx. Computations are carried out with two mesh sizes
(64 · 128) and (128 · 256). We use three Dirichlet boundary condition for temperature, species mass fraction
and potential function u, namely Tboundary = 373 K or 573 K, Yboundary = 0, uboundary = 0. On the symmetry
axis Neumann symmetric boundary conditions are used. A more physical test case would be to study drop
vaporization in an infinite medium but that would imply quite a large distance between the boundary and
the droplet interface, in order to be free from the influence of boundary conditions. Here, as we are consid-
ering the method from a numerical point of view, we keep the computational domain quite small.

On Fig. 1(a) and (b), we present the temperature field and the mass fraction field around the interface at
t = 0.4 s on the finest grid (128 · 256) and for Tg = 373 K; we observe that a spherical symmetry property
around the drop is obtained in the simulations and no artificial heating of the droplet occurs. We then present
in Fig. 2 the time evolution of the reduced square diameter (until d/d0 = 0.5) for the finest grid resolution. We
observe that a d2 law is perfectly verified for both gas temperatures. The two different grid resolutions are com-
pared in Fig. 3 for the two gas temperatures: the convergence of the method is satisfactory. We then present in
Fig. 4 the temperature profile in the drop and in the gas for two different times (t = 0.01 s and t = 0.15 s). We
observe that the drop reaches an equilibrium temperature as expected, and Fig. 4 also clearly shows that the
numerical procedure for handling the temperature gradient jump on the interface is efficient.

4.2. 2D drop vaporization with a constant vaporization speed

This second test case illustrates the efficiency of the velocity extension methodology described in Section 3.5
for solving Navier–Stokes equations with a velocity jump condition. In this theoretical test case, we consider a
static drop with a constant vaporization speed, without any coupling with heat and mass transfer. Thus only
Eqs. (15), (16), (20) and (21) are solved with the jump conditions (11), (17), (18) and (19). The drop is initially
static, and we use free boundary conditions everywhere. The exact solution of the problem is obvious: the drop
Fig. 1. (a) Temperature field and (b) vapor mass fraction field (t = 0.4 s).



Fig. 2. Normalized square diameter versus time (s): (n) Tg = 373 K; (h) Tg = 573 K; grid size is 128 · 256.

Fig. 3. Normalized square diameter versus time (s): Tg = 573 K, (n) grid size 64 · 128, (—) grid size 128 · 256; Tg = 373 K, (h) grid size
64 · 128, (- - -) grid size 128 · 256.
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stays static and vaporizes linearly. Thus we can compute the temporal mass variation of the vaporizing drop
and we can compare it with the exact solution to the problem. We performed numerical tests in a 2D config-
uration on a 128 · 128 grid; the initial drop radius is RG = 200 lm, the length of the domain in the x-direction
is lx = 6RG and in the y-direction ly = lx.

The same physical properties as above are kept. The vaporization speed j~V intj is equal to 0.001 m s�1. The
temporal mass variation is known exactly and reads:
M thðtÞ ¼ qlpðRG � V inttÞ2 ð42Þ

Whereas such a test case seems very simple, only accurate methods that avoid the development of parasitic
currents, can succeed. In particular, good predictions of the global temporal mass evolution are only possible
when the liquid extension velocity exhibits the divergence-free property. In order to point out that require-
ment, we draw in Fig. 5 the exact solution, the results with Nguyen et al. [14] method (without divergence-
free), and our results. The time of vaporization is limited to 1 ms. The divergence-free property clearly appears
to be of high influence on the mass conservation, as 10% of the mass is lost after 1 ms when that property in
not involved in the simulations. We observe in Fig. 6 for a longer time of vaporization that results obtained



Fig. 4. Temperature profiles: (n) t = 0.01 s, (h) t = 0.15 s.
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with our method for the temporal mass evolution are the same as the exact solution. Moreover, we observe
that the drop shape remains circular. We draw, at the same time t = 0.001 s, the real velocity field in
Fig. 7, the gas velocity field and its extension in the liquid domain (Fig. 8), and the liquid velocity field and
its extension in the gas domain (Fig. 9). As previously mentioned, the good agreement between the simulations
and the exact solution is strongly linked to the accurate extension of these velocities. We clearly observe that
the parasitic currents in the liquid phase and its extension in the gas are 1000 times smaller than the real liquid
velocity field.

In order to go further in the convergence study, the loss of mass between the exact solution and the numer-
ical results is given in Table 2. The relative error E to the exact solution is given for three different grid res-
olutions, 32 · 32, 64 · 64 and 128 · 128, at three different times. We observed that the order of the method is
close to 2. Note that the vaporization rate is fixed, and the energy equation and the mass fraction equation are
not involved in these calculations.

4.3. Displacement of a vaporizing drop due to wall boundary conditions

This theoretical test case enables us to check that the Stefan flow computed in the gas phase is correctly
coupled with the liquid flow through the procedure described in Section 3.5. Wall boundary conditions are
imposed on the left boundary, the right boundary and the bottom boundary, whereas free boundary condi-
Fig. 5. Mass evolution of the drop: (n) level set simulation (128 · 128), (—) exact solution, (h) without divergence-free property.



Fig. 6. Mass evolution of the drop: (n) level set simulation (128 · 128), (—) exact solution.

Fig. 7. Real velocity field (t = 0.001 s).
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tions are assumed on the top of the domain. Numerical tests are performed in a 2D configuration with
64 · 128 grid resolution. The drop radius is initially equal to RG = 200 lm, the length domain in the x-direc-
tion is lx = 6RG and in the y-direction ly = 2lx. The drop is initially centered on (lx/2, ly/4).

The same physical properties for the fluid and speed vaporization are kept (j~V intj is still equal to
0.001 m s�1). Although we do not know the exact solution to the problem, intuitive arguments lead us to con-
clude that the drop should have an upward motion due to interaction between the wall boundary conditions
and the ejected vapor flow that should push the drop up to the top boundary. The results of our computations
are presented in Fig. 10 for three different times (t = 0,0.01,0.02). The results clearly show that the numerical
method used to impose a normal velocity jump, presented in Section 3.5, is physically significant; the coupling
between the Stefan flow and the liquid flow appears very satisfactory.

4.4. Vaporization of a moving droplet

In this section, we provide test cases in order to illustrate the ability of the method to describe the vapor-
ization of a moving deformable drop. In particular, using low dissipative algorithms described in Section 3.3,



Fig. 8. Gas velocity field and its extension in the liquid domain (t = 0.001 s).

Fig. 9. Liquid velocity field and its extension in the gaseous domain (t = 0.001 s).

Table 2
Rate of convergence for three different times

Grid E (t = 0.001) (%) Order E (t = 0.002) (%) Order E (t = 0.003) (%) Order

32 · 32 0.73 – 0.70 – 0.63 –
64 · 64 0.20 1.9 0.13 2.3 0.11 2.4

128 · 128 0.056 1.9 0.03 2.1 0.03 1.9
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simulations can be carried out with high drop velocity and strong interfacial thermal gradient. We consider
a 2D axisymmetric water drop with radius is RG = 300 lm, initial drop temperature equal to 323 K, initial
drop velocity VG = 1 m s�1 and initial gas temperature equal to 873 K. On the boundary of the domain we
use the Dirichlet boundary condition for temperature, species mass fractions and pressure: Tboundary = 873 K,
Yboundary = 0, Pboundary = 0. Neumann symmetric boundary conditions are used on the symmetry axis. The



Fig. 10. Droplet motion induced by Stefan Flow and wall boundary conditions Physical time between pictures is 0.01 s.
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length of the domain in the x-direction is lx = 4RG and in the y-direction ly = 8lx. Computations are carried
out on a 64 · 512 grid size. An initialization step is performed before starting the computation in order to get
smooth initial conditions for temperature and mass fraction. During this preliminary step, the drop is consid-
ered as static and only diffusive terms are involved. Fig. 11 shows the mass fraction field evolution for different
times. The coupling of a general formalism with accurate and robust numerical methods enables us to capture
quite subtle effects, such as the non-homogeneous vaporization rate around the drop presented in Fig. 12: we
observe that the vaporization rate is much larger in front of the drop, where vapor mass fraction gradients are
stronger, than behind the drop, in the vapor plume where the vapor mass fraction is more concentrated and
thus induces lower vapor mass fraction gradients. In Fig. 13, we present the temperature field evolution for
different times, and Fig. 14 shows the ability of the method to describe spatial temperature variation inside
Fig. 11. Temporal evolution of the vapor mass fraction field Physical time between pictures is 0.0015 s.



Fig. 12. Non-homogeneous vaporization vector and its extension around the drop t = 0.0075 s.

Fig. 13. Temporal evolution of the temperature field Physical time between pictures is 0.0015 s.

Fig. 14. Temperature field inside the drop t = 0.0075 s.
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the drop. In particular, the development of a vortex inside the drop due to the viscosity jump between the
liquid phase and the gas phase can lead to singular spatial temperature distribution inside the drop [3,5,22],
as is shown in Fig. 14. Moreover, we observe in Figs. 11 and 13 that the drop shape is no longer spherical
and this shows the importance of defining the local vaporization rate per unit of surface area.

5. Conclusions

The developments and applications of numerical tools for coupling interface tracking methods with reactive
flows are presented, in particular for liquid–gas vaporizing flows. This challenging task is carried out using the
level set method for interface tracking associated with the ghost fluid method to impose accurate jump con-
ditions across the interface.

Specific care is taken with the accurate extension of discontinuous variables to minimize numerical diffusion
across the interface for mass fraction and temperature field, to avoid artificial heating of the droplet. More-
over, in order to compute the Stefan flow around the drop accurately, we have developed an original diver-
gence-free velocity extension of the liquid velocity field in the gas phase. Various numerical examples show
that the method is accurate, robust and able to capture physical effects. The main interests of the method
are its ability to handle phase change with heat and mass transfer and to avoid unrealistic velocity field devel-
opments that could affect numerical solutions. Moreover extension to 3D configuration is straightforward.

Future work will deal with a more complete modeling of vaporization, by taking into account gas density
variations due to thermal and mixing effects, multi-component liquids and interaction between vaporization
and combustion. In particular, future investigations will emphasize on the validations of numerical results
against experimental data.
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